Feeds:
Entradas
Comentarios

Posts Tagged ‘velocidad luz’


A pesar del título, no voy a exponer una contradicción realmente, aunque nuestro intelecto así lo vea; y además el hecho de la Invasión Extraterrestre no es el centro de la cuestión. Simplemente, además de llamar la atención, he elegido este título por 2 motivos:

1) A fin de cuentas es como Ronger Penrose lo expone en su libro “La nueva mente del emperador”

2) Podría haber escogido otra temática con la que ejemplificarlo, y poder hablar de la paradoja en sí, pero me hace mucha gracia como ciertas personas (en estos momentos me acuerdo de una física) toman una aptitud incrédula y de cerramiento total ante sus acepciones negativas cuando se pronuncia la palabra “extraterrestre”.

En realidad se trata de una realidad física, según la teoría clásica (nada de supercuerdas de momento), aunque nuestra mente se niegue a comprenderlo.

Yo la considero como un paso más allá de la consabida y comprobada paradoja de los gemelos. Y lo expongo como demostración de que la realidad, a veces, supera con creces a la ficción.

Recordemos la paradoja de los gemelos.

Uno de los gemelos a, pongamos, los 20 años de edad se va a realizar un viaje espacial en una nave que alcanza velocidades cercanas a la luz. Cuando vuelve del viaje se encuentra que su hermano gemelo ha envejecido enormemente comparado con él.

Y no es que se haya encontrado menos radicales libres en su camino, si no que realmente para el viajero ha pasado menos tiempo. 2 años en lugar de 10 por ejemplo.

Pero vayamos a nuestro caso. La paradoja es la siguiente:

Dos conocidos se cruzan en la calle. En ese preciso momento, justo en el mismo instante del cruce,  mientras para uno una civilización de la galaxia de Andrómeda viene a invadirnos, para el otro la decisión de la invasión aún no se ha tomado.

Ciertamente, para el que no sepa nada de esta paradoja es bastante “grillante”. De hecho, hemos mencionado Andrómeda, que es la galaxia importante más cercana, pero si elegimos una de las más lejanas la diferencia temporal podría llegar a ser realmente incomprensible (por ejemplo podría no existir esa civilización como civilización tecnológica, o incluso no existir simplemente).

Pero existe una demostración matemática para esta paradoja, que trataré de esbozar a continuación, al menos los principios físico-matemáticos en los que se basa, que son a su vez, la base de la relatividad especial de Einstein y Poincaré. Aunque todo proviene de la idea de espacio-tiempo de Minkowski, profesor de Einstein.

De hecho comenzaré por definir la distancia de Minkowski. Además, para poder representar el espacio-tiempo y ayudar a nuestro intelecto a asimilar la idea, nos centraremos en un espacio bidimensional, y el tiempo como tercera dimensión.

Usaremos una coordenada temporal t en el eje vertical, y 2 espaciales divididas por la velocidad de la luz (para simplificar la representación), medidas horizontalmente: x/c y z/c.

De esta forma, cada punto de este espacio-tiempo, representa un suceso, que tiene sólo existencia instantánea. Una partícula se representaría por una “línea de universo” mientras exista.

Basándonos en la propiedad de la teoría de la relatividad de que es imposible materialmente viajar más rápido que la luz, podemos dibujar “conos de luz” en esta representación tridimensional del espacio-tiempo.

La “distancia” minkowskiana, que tiene similitud con la distancia euclídea, pero con un significado diferente:

Distancia de minkonski

La distancia minkowskiana tiene el significado de tiempo “experimentado”.

Sólo para objetos en reposo t’=t, a medida que el punto aumenta de velocidad, t’ (distancia de Minkowski) disminuye, como podemos apreciar en la fórmula.

Normalmente, para objetos a bajas velocidades la diferencia es muy difícil de apreciar en cortas distancias, pero para un fotón que viaja a la velocidad de la luz (que dan lugar a las representaciones de “conos de luz”) t’=0. Es decir, y como ya he comentado innumerables veces en el blog, el tiempo se detiene. Un fotón no experimente el paso del tiempo.

Usando esta representación es muy fácil comprobar la veracidad de la paradoja de los gemelos.

Paradoja Gemelos

AC representa la “línea del universo” del gemelo que se queda en casa mientras que AB y BC representan el viaje de ida y vuelta, respectivamente, del gemelo viajero. Aplicando la distancia de Minkowski tendremos claramente que AC > AB + BC.

El tiempo experimentado por el gemelo casero es definitivamente mayor que el de su gemelo viajero (así que ya sabéis viajad si queréis que vuestros amigos envejezcan más rápidamente 😉 ).

Este efecto está comprobado y medido en infinidad de ocasiones, y como ya he dicho más de una vez, los GPSs no serían tan precisos sin considerarlo.

Los “espacios simultáneos” dentro de la geometría de Minkowski, son aquellos que representan el espacio en cada instante para un observador, es decir, el conjunto de sucesos que él considera simultáneos.

Para un observador en reposo es fácil pensar que serán planos perpendiculares al eje temporal. Sin embargo para un observador en movimiento estos espacios no son perpendiculares al eje temporal.

Espacios Simultaneos

Aquí incorporando el concepto de relatividad espacial, a través de los movimientos de Poincaré, descubriremos que tendrán una cierta inclinación, dependiendo de su “línea de universo”. Esta inclinación es en sentido contrario (de forma semejante a la distancia) al que cabría pensar en el mundo euclídeo. Aunque en realidad este sentido es indiferente para nuestra demostración.

Aún en pequeñas diferencias de velocidades, las diferencias temporales a grandes distancias pueden llegar a ser significativas.

En el caso del ejemplo (2 personas que paseando se cruzan, y Andrómeda), hablaríamos de 2 x 10 elevado a 19 kilómetros de distancia, y varios días de diferencia, en cuanto a lo que podemos considerar simultáneo.

Andromeda

Si aumentamos significativamente la distancia, yéndonos a otros supercúmulos de galaxias lejanos, la diferencia temporal se hace más y más acuciante.

Con las diferencias de velocidades y distancias adecuadas, puede incluso suceder que los mismos sucesos ocurran en orden distinto para 2 observadores.

Por ejemplo, un observador podría considerar simultáneos el hecho de que las naves espaciales de la civilización A se estén dirigiendo a la Tierra para invadirla, mientras que otra civilización B (muy alejada de la A, por su puesto), aún no tiene tecnología para viajes espaciales.

Sin embargo, para otro observador, en ese mismo instante, puede que la civilización B ya se esté dirigiendo a la Tierra a invadirnos, mientras que la civilización A aún o ha tomado esa decisión.

Esto es realmente “grillante”, ¿verdad?

Y, a pesar de todo, es cierto.

Anuncios

Read Full Post »


No aspiro a que esta fórmula sustituya a la de Drake, ni mucho menos, pero voy a atreverme a realizar un ensayo con mi propia aproximación, teniendo en cuenta factores no considerados hasta el momento, y tratando de ser un poco más precisos, especialmente en lo que se quiere medir.

Desde luego, inevitablemente, va a quedar un poco más compleja, pero mi intención es dar un paso hacia delante, ser más precisos, tanto en las medidas en sí como en la definición de lo que se pretende estimar.

En el fondo de esta aproximación subyace la idea, que ya he comentado con anterioridad, de que el fin de toda civilización es eternizarse, igual que el fin de la vida es subsistir.

Usando la lógica de Darwin sobre el origen de las especies, sólo los verdaderamente preparados subsistirán. El resto perecerá en el intento. Esto mismo ocurrirá a las civilizaciones extraterrestres.

Antes de nada, y para que no ocurra lo mismo que con la fórmula de Drake, debemos concretar con precisión qué pretendemos medir. En lugar de estimar demografías generales voy a ser más arriesgado. Me voy a centrar en el motivo de este blog.

La ecuación tratará de calcular el número de civilizaciones extraterrestres que nos han visitado a lo largo de nuestra historia.

Los escépticos ya habrán dejado de leer, para el resto, aquí va mi sistema.

Como la fórmula es complicada, comenzaré exponiendo una versión resumida, para luego ir profundizando en los distintos factores. Necesitaré justificar muchos de mis razonamientos, por lo que puede que me lleve más de un post desarrollar mi exposición.

Pero vayamos al grano, que parezco un comercial de un concesionario de coches.

Ecuación de Chelu, forma resumida:

 

Visitantes= Visitantes velocidad luz + Visitantes atajo supercuerdas

 

¿¡Mande!?

Bueno, vayamos despacio Don Ignacio.

Siguiendo una lógica parecida a la del astrofísico ruso Nicolai Kardashev (y aunque algún que otro argumento que he utilizado a lo largo de mis exposiciones se pueda interpretar en contra de esta suposición), partiremos de una suposición, de una facilidad lógica para separar, clasificar y simplificar la posible casuística.

Vamos a distinguir entre los visitantes cuya tecnología les permita viajar a velocidades cercanas a la luz (que no a la velocidad luz), y visitantes cuyo nivel tecnológico les permita aprovechar la multidimensionalidad propuesta por la teoría de las supercuerdas, o los agujeros de gusano que “permite” la teoría de la relatividad general, o bien cualquier otra facilidad de la física que aún no podemos si quiera sospechar.

Esta separación de estos 2 sumandos hace referencia no sólo a la tecnología que tengan disponible, si no también, y consecuentemente, a la distancia a considerar.

En el primer caso, y como suponemos que la velocidad luz no se puede alcanzar, y la mayoría querrá volver a su planeta origen en un plazo de tiempo razonable (y aquí me refiero en tiempo para el observador, no para el viajero, que sería mucho más corto), voy a restringir los cálculos a una pequeña porción de la vía láctea.

En el segundo sumando me referiré a todo el universo conocido, pero tranquilos ya llegaremos a eso, no nos pongamos nerviosos.

 

 

Visitantes velocidad luz=[((Número de Sistemas Estelares en Radio Razonable  x (Planetas en Ecosfera + Factor Satélite Viable x Satélites en Ecosfera) x Planetas con Posibilidades Vida x Planetas donde Surja la Vida x Planetas donde la Vida Puede ser Inteligente x Planetas donde llegue a aparecer la Inteligencia x Planetas con Vida Consciente x Planetas con Tecnología) -1) x  Tecnología Viaje Sub-Luz x Factor Extinción] x Factor Expansión x Visita Realizada.

 

Si queremos impresionar, o simplemente por reducir el espacio, podemos usar la siguiente nomenclatura para la fórmula:

Vvl=[((Nserr  x (Pe + Fsv x Se) x Ppv x Psv x Pvpi x Pvi x Pvc x Pt) -1) x Tvl x Fext] x Fexp x Vr

 

Decididamente infumable.

Vayamos explicando y simplificando en lo posible.

 

Vvl= Visitantes velocidad luz, es decir, el número de civilizaciones extraterrestres que han visitado la Tierra viajando a velocidades sub-luz. Se trata del primer sumando de la fórmula general, y, de momento, el valor más importante que queremos estimar.

 

Nserr= Número de Sistemas Estelares en Radio Razonable.

Este es el primer parámetro del que vamos a hablar en profundidad. Como en Vvl sólo consideramos viajes sub-luz, sin ningún tipo de “atajo”, tenemos que restringirnos a una zona del espacio que esté razonablemente cerca.

¿Y qué es “razonablemente cerca”? Bueno, hemos visto que el tiempo es relativo, y que, a medida que nos acercamos a la velocidad luz, el tiempo se dilata más ostensiblemente. Una vez resuelto el problema de una fuente de energía suficientemente grande, nada impide seguir acelerando y acelerando hasta aproximarse muchísimo a la velocidad de la luz. En el post anterior hemos hablado del 50%, del 99%, del 99,9% (en el comentario),…No obstante habría que poner un límite físico razonable en las consideraciones. Por supuesto no todos los viajes sub-luz se acometerán a las mismas velocidades, pero ciertamente se deberán alcanzar velocidades muy cercanas a la luz.

Voy a ser conservador y estimar una velocidad del 90% de la de la luz, lo que dividiría el tiempo total necesario para alcanzar el objetivo por 2.

Es decir, una distancia de 50 años luz se podría acometer en 25 años, para el viajero.

Esto va a definir el Radio Razonable a considerar: 50 años luz, que podrían cruzarse en 25 años para el viajero yendo al 90% de c. En mi opinión me quedo corto, pero vamos a ser prudentes.

Dentro del radio de 50 años luz de nosotros hay algo más de 1.800 estrellas, 1.300 de las cuales se consideran sistemas estelares. Este será nuestro número de partida.

Nserr=1.300 sistemas estelares.

Llegado este punto tengo que mostrar mi desacuerdo a que los sistemas multiestelares no puedan contener planetas. En los cálculos relativos a la fórmula de Drake, siempre se desestiman todos los sistemas multiestelares porque se cree que no puedan tener planetas con condiciones de vida suficientemente estables. Yo creo que, aunque la probabilidad de encontrar planetas habitables sea sensiblemente menor, seguro que se dan casos de vida en sistemas más complejos que el nuestro, con 2 o 3 estrellas, como Sirio, de la que hablaremos en un futuro post.

Pero en nuestro caso no los voy a considerar, para simplificar.

 

Los siguientes 3 factores están muy unidos y los veremos juntos:

(Planetas en Ecosfera + Factor Satélite Viable x Satélites en Ecosfera)

Bien.

El primer parámetro se trata del mismo manejado en la fórmula de Drake, es decir, aquellos planetas que se encuentran a una distancia, ni demasiado cerca ni demasiado lejos de su estrella para poder tener vida.

Como ya dije, mi idea es afinar más. Así que, aunque siga pensando que los valores que estime son conservadores, lo cierto es que no lo serán tanto, para eso detallo más los factores. Por tanto voy a estimar este valor en 2.5, simulando lo mejor posible la situación que se da en nuestro sistema solar.

Los otros 2 parámetros vienen a recuperar los grandes olvidados cuando se hacen este tipo de cálculos: los satélites.

Los satélites también pueden contener vida, y son más numerosos que los planetas.

De hecho los científicos aún no han descartado encontrar rastros de vida en Titán (del cual se dice que es un gemelo de la tierra en sus inicios: http://www.elmundo.es/elmundo/2009/08/06/ciencia/1249569527.html), Europa o Ganímedes.

Como valor para Satélites en Ecosfera he estimado 4. Aunque en nuestro Sistema solar solo tengamos 3, entre la Tierra y Marte,

1)      la media de satélites por planeta es muy superior, en torno a 15.

2)      Hay satélites fuera de los planetas que consideramos en la ecosfera con posibilidades de vida

3)      Consideramos una media de 2.5 planetas en la ecosfera, lo cual nos lleva a una media, considerando sólo la media entre Tierra y Marte de 3.75.

 

En fin 4 parece un buen número, conservador pero bueno.

En cuanto al Factor satélite viable, voy a dividir por 10, es decir un satélite en las mismas condiciones, tendrá diez veces menos posibilidades que un planeta.

De esta forma, podríamos reducir esta parte de la fórmula en un solo factor, cuyo valor estimado sería 2.9 (2.5 + 4 * 0.1=2.9), y le podríamos llamar Cuerpo Celeste en Ecosfera (Cce)

Read Full Post »


El tema de calcular  la energía necesaria para alcanzar esas velocidades no es trivial, especialmente en el caso de naves basadas en propulsión acción-reacción como nuestros actuales cohetes.

En estos casos el problema principal radica en que el combustible necesario para la propulsión forma parte del peso de la nave. Cuando hablamos de alcanzar velocidades cercanas a la luz, estaríamos hablando de verdaderamente grandes cantidades de materia.

En: http://www.librosmaravillosos.com/relatividadparaprincipiantes/capitulo05.html

 se calculan 8.000 toneladas de hidrógeno para un efecto de dilatación de tiempo de la mitad, para una nave de una tonelada de carga útil. Vamos, lo que viene a ser llegar a Alfa Centauri en 2 años para el viajero, 4 para el observador. Con un motor de fusión nuclear, a reacción, por supuesto.

 

Yo desde luego, siempre he pensado que es necesario otro tipo de propulsión si queremos (y además debemos) acometer viajes interplanetarios fuera del sistema solar.

En : http://www.acropolis.org/news/Display_news.aspx?lang=esp&newsID=90

Se menciona una posibilidad. Es más, se da por hecho que al final del siglo lo pondremos en práctica. Por cierto, el autor (Dr. Franklin Felber) de esta solución matemática exacta para la ecuación de Campo Gravitatorio de Einstein  lleva 30 años trabajando para las fuerzas armadas de los EEUU, en Nuevo Méjico (el que quiera leer entre líneas puede hacerlo). Según esta solución, llegado cierto punto (57,7% de la velocidad de la luz), la nave se autoaceleraría sin necesidad de ningún tipo de energía adicional.

Según este mismo artículo, acelerar una carga de una tonelada a un 90 por ciento de la velocidad de la luz, velocidad a la cual la compresión del tiempo para el viajero es aproximadamente el 50%,  requiere una energía de al menos 30 mil millones de toneladas de TNT, algo más de 1 millón de bombas nucleares como la de Hiroshima, o lo que es lo mismo 500 bombas atómicas actuales de 60 Megatones (seguro que las hay más potentes).

Según estos cálculos en el actual arsenal atómico mundial habría energía más que suficiente para que una nave de una tonelada pudiera alcanzar el 90 por ciento de la velocidad de la luz al menos 4 veces (posiblemente bastantes más veces, del orden de 20 o más), o lo que es lo mismo 2 viajes de ida y vuelta.

 

Ninguna nimiedad, por supuesto, pero siempre hablamos de una tecnología muy superior a la nuestra. No hablamos de límites inalcanzables, hablamos de cantidades que la leyes físicas conocidas permiten alcanzar y superar con ‘facilidad’.

 

Otro enlace para el que se fíe más de la agencia EFE: http://www.laflecha.net/canales/ciencia/200602141

 

Yo no sé si la proposición planteada en estos artículos será una solución viable en la práctica o no, pero desde luego no me cabe la menor duda de que soluciones haberlas haylas. Sólo es cuestión de ahondar un poco más en ciertas partes de la física o buscar alternativas a los métodos tradicionales. Yo veo la solución en el gravitón, cuando este por fin aparezca y se dé a conocer.

 

Otros posibilidades, se plantean en:

http://neofronteras.com/especiales/?p=22

Y de forma especulativa en:

http://neofronteras.com/especiales/?p=29

 

 

Yo, por mi parte he hecho cálculos. Según mis cálculos una nave de 1 tonelada, que viajara al 99% de la velocidad de la luz, y por tanto su masa a considerar fuera de 7 toneladas, llevaría impresa una energía cinética en torno a 150 millones de toneladas de TNT, es decir 150 megatones, por supuesto sin considerar ningún tipo de carga de combustible. De cualquier forma, y dado que estaríamos hablando de cantidades muy inferiores a todo lo que he encontrado, seguramente me habré equivocado u obviado alguna consideración importante.

Read Full Post »